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Abstract:
High order collision integrals have been calculeted for the
-r
potentials V(r) = Ae /P and fC/rn for =2, 3, 4, 5, 6, 8, 10,

15, 25, 50. These should enable transport properties to be calculated

for these potentials to a higher accuracy than previously. Some

previous calculations of collision integrals for these potentials

have been checked.
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l. Introduction

The interaction potential between atoms and molecules at short
internuclear distances, r, can be approximated over a wide range
of r by either the exponential repulsive potential V(r) = Ae-?/P
or by the inverse power potential X C/rp. Some transport collision
integrals for the first of these potentials have been computed by
Monchick (1959) and for the second (n = 2, 3, 4, 6, 8, 10, 12, 14, €0 )
by Kihara, Taylor and Hirschfelder (1960). All of the high order
collision integrals needed to compute accurately the high order
approximations to the transport coefficients were not caelculated in
either case., In this paper we check these earlier calculations and
compute the collision integrals not previocusly calculated. We also

compute the collision integrals for some additional high values of

n in the case of the inverse power potentials.

2. Exponential Repulsive Potential

. ‘o s . _Ilflns)
We adopt the usual definition of the collision integral
given by Hirschfelder, Curtiss and Bird (1964). We follow Monchick

(1959) and define a temperature parameter

« = Fou(A/LT) (1)

for the potential



V) = A(rr/la (2)

where k is Boltzmann's constant and T is the absolute temperature.

We also define the dimensionless collision integrals I( 1,5) by

__()__('q’ & = (s/“{TJeT‘)io{Z/JI I(,(,s) , (3)

The collision integrals I(l,s) (s =1 to 5); I(z’s)(s =2 tod);
IG: 3) have been calculated by Monchick for & range of X between
3.50 and 28.50. To compute the high order approximations to the
transport coefficients :he collision integrals I(2,57 :E(Z,é;
1(3,9; 1(3’5); ‘L(u,h) are needed.

The collision integrals were computed by the method described
in detail by Smith end Munn (1964). Indeed the original progremme
by Smith and Munn built for an IBM 7090 computer was adopted for the
ICT 1905 computer owned by Queen's University. Details are given in
a thesis by Higgins (1967). Because the range of the parameter
was large an initial run gave some poor results. This was corrected
by breaking the production run into two partsione from K. = 3.5

to 13.0, the second from ol = 13.5 to 28.5.
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The collision integrals I (1’1); etc. thus calculated were
in agreement with those of Monchick to better than one part in 1,000
in all cases where comparisons with Monchick were possible. We are
therefore confident that the remaining 5 sets of collision integrals
shown in Table 1 are correct to the same accuracy and that Monchick's

results are correct at least to this accuracy.

3. Inverse Power Potentials

Kihara et al. have shown that the collision for the potential:

V) = /e “

can be expressed in the fom

4,°) (ytjéT ( >%71(5+1“i’) AI(V‘)(S)
where
A% = £ yo(l— MVQX) ”(/31 (6)
and

’VL
R = g_(e/vw)/, (7)
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In these formulas /Av‘ is the reduced mass, .77 (x) is the
Gemma function, x is the classical deflection function, b is the
impact parameter and E is the energy of relative motion. In the

programme already described the transport cross sections
co
) = ) 4 (i-eost ) b (8)
0
were calculated. From (6), (7) and (8) it is readily shown that

par- £ (E) o) ©)

R
and A (n) is independent of the energy E.

X

each case and A ~ (n) was computed from (9) in each case. The

The cross sections Q (E) were computed for 4 energies in

accuracy of the quantities A L (n) could be estimated from the

/e'(n).

The results for the repulsive potential are listed in Table 2

agreement of the four values of A

to the accuracy shown for n = 2, 3, 4, 5, 6, 8, 10, 15, 25, 50, and
100. Also shomn are the results of Kihara et al, Agreement(én those
cases where comparisons are possible)is excellent.

The results for the attractive - rigid potential (that is for
the potential with en infinitesimal rigid core) are shown in Teble

3. The comparison with the results of Kihere et al. is excellent
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except in the case n = 2 when there is a difference of about 1 to 3
parts in 1,000. We are confident of the accuracy of our results to
the number of figures quotedCexcept in this one case, the only case
which gave us d.'i.fficulty) o The difficulty arises because if N = 2 ®~J~ 'IIZ
(> < 1/[2 the olassical deflection angle equals (- ©0) . There-
fore, between [3 =0 and 1/)2 we replaced it by & rendom phase >
that is we replaced cos ’QX by O if A =1or 3, by % if
yan 2 and by 1 if L = 4. For 13 just above J/J—; the
angle % was very large and the integrand oscillated rapidly and was
difficult to evaluate. Therefore, we believe that the Kihara et al.
values should be used for /é_ =1, 2 and 3. In the case /6: 4
our result should be correct to & few parts in 1,000. When the un-
reality of this physical model is realized it did not seem worthwhile
computing this last number to a higher accuracy. The accuracy quoted

should be sufficient.
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Table 1 Collision integrals for the exponential repulsive potential

X I(z,s) I(z,6> I L

(3,4) (3,5) T (1)
28.50 58.49 405.3 .30 84.78 12,11
28.00 58,46 405.0 .29 8. 69 12.11
27.00 58.40 LOL.. Uy 14.26 84,50 12.11
26400 58.33 403.8 Wpo2ly 84.29 12.11
25,00 58.25 4L03.0 .21 84.07 12.11
24,00 58.17 402,3 .17 83.82 12,12
23,00 58.08 40Lel U1y 83.56 12.12
22,00 57.98 400.5 14.10 83.27 12,12
21.00 57.87 399.4 14.06 82,96 12,12
20,00 57.7h 398.3 14.01 82,61 12,12
19.00 57.60 397.0 13.96 82,23 12,12
18.00 57.4d 395.5 13.90 81.81 12,11
17.00 57.25 393.8 13,8 81.33 12,11
16.00 57.0k 392,0 13.77 80.80 12.11
15.50 56.93 390.9 13.73 80.51 12,10
15.00 56480 389.8 13.68 80. 20 12,10
1. 50 56.67 388.6 13,64 79.87 12,10
14.00 56452 387.2 13.59 79.51 12.09
13.50 564 35 385.8 13.54 79.13 12.08
13.00 56.18 3842 13.48 78.72 12,08
12,50 55.98 382.5 13.43 78.28 12.07
12,00 55.77 380.6 13.36 77.80 12,06
11.50 55.53 378.6 13.29 77.28 12.05
11.00 55.27 376.3 13,21 76.72 12,03

10.50 54.98 373.8 13.13 76.10 12.02
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Collision integrals for the exponential repulsive potential (chnalfL)

———

X I(2,5) I(2,6) I(z,u) "‘(3,5) ‘L(A,A)

10.00 5. 66 371.0 13.04 75.43 12,00
9.50 54.29 367.9 12,94 The 69 11.98
9.00 53.88 36Le3 12.83 73.86 11.95
8.75 53,65 362.4 12,76 7342 11.93
8.50 53.41 360.3 12,70 72.95 11.92
8.25 53.15 358.1 12,63 72.45 11.90
8.00 52.87 35547 12,56 71.93 11.88
7.75 52,57 353.2 12.48 71.37 11.86
7.50 52.24 350.4 12,40 70.78 11.83
7.25 51.89 7.5 12,32 70.14 11.80
7.00 51.51 3k 3 12,22 69.47 11.77
6.75 51.10 340.8 12,13 68.75 11,74
6.50 50. 65 337.1 12,02 67.98 11.70
6.25 50.16 333.0 11.91 67.15 11.66
6.00 49.62 328.6 11.78 66.26 11.61
5.75 49.03 323.7 11.65 6530 11.56
5. 50 48,38 318.3 11.51 6. 26 11.50
5.25 47.66 312.4 11.35 6314 1143
5.00 46,86 305.9 11.18 61.91 11.35
L.75 45.97 298.6 11.00 60.58 11.26
4.50 44.97 290.5 10.79 59.11 11.15
L4.25 43,8 281.5 10.57 57.50 11.04
4,00 42,57 271.3 10.32 55.73 10.90
3.75 41,12 259.7 10.05 53.76 10. 74

3.50 39.47 2647 9e1h 51.58 10.55
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Table 2 A(

Kihara et al.
~Hirschfetder
—awéd Smith

Kihara et al
Smith
Kibare et al.
Smith
Kihara et al.
Smith

Kihara et al.
Smith

Kihara et al
Smith

Kihara et al
Smith

Smith
Smith
Smith

Snith

£ =1

0.3976
0.3977
0.3115
0. 31126

0.298
0.29838

0. 30007

0. 306
0.30593

0.321
0. 32022

0.333
0.33380

0. 36064
0.39365
0.43095
0.45756

) (n, repulsive)

{2

0.5278
0.5281

0.3533
0.3533

0. 308
0. 3082*'7

0.283
0.28317

0.279
0.27784

0.278
0.27748

0.28140
0.29011

0. 302806
031334

L=

0.7136
0.7130

0.472
0.4722

012381
;.39325
;.385h7
;.383275

0. 38686
0. 39953
0.41965
0.44548
0.46535

y

0.8137

0.5033

0.42226

0. 38889
0.37226
0.35777

0.35279
0. 35160
0.35720
0. 368,04
0.3787
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Kihara et al.
Smith

Kihara et al.
Smith

Kihara et al.
Smith

Kihars et al
Snith

Kihara et al
Smith

Smith
Smith
Smith
Smith

Smith

0.8069
0.809

0.6412
0.6411

0.5527
0.5523

0.48207

0.43&-2
00&-3&25

0. 38657
0.370338
0.369731
0. 392405
0.4.286727

attractive =

A

0.7110
0. 7085

0.4641
0.#635

0. 3852
00 3&.'6

0 34774

0.3277
0.3276

0.30613
0.29669
0.289038
0.290850
0. 3014206

rigid)

1.1148
1.112

0.771

0.6377

0.5540

0.502

0.49978
0. 44472
0.422896
0.410611
0.420138

0.44.35732

L

1.007

0. 636
0.5122
0.4549

0.4235
0.39038
0.3752hh
0. 36103
0. 358649
0. 3670490

. e



